Patterns of Mercury Release from Profundal Sediment of CA Reservoirs

Acknowledgements

My advisor: Marc Beutel

Professor Peggy O'Day

Dr. Mark Marvin-DiPasquali

Sarah Brower, Water Resources Specialist Jeffery Pasek, Watershed Manager

Mark Seelos, Water Resources Specialist

Mercury Cycling: The Basics

Bioaccumulation of Mercury:

MeHg (aq) -> Bacteria/Algae -> Zooplankton -> Small Fish -> Big Fish -> Humans

Mercury in Lakes and Reservoirs

- Lakes are full of mercury (Hg)
- Hg2+ = bad, but not terrible
- MeHg = horrible!
- Hg2+ converted to MeHg by anaerobic bacteria

Advanced Mercury Cycling

Accumulation of MeHg is dependent on 2 processes:

Methylation

- Conversion of Hg2+ to MeHg
- Redox sensitive
- Sweet spot = 200 mV to -200 mV
- Sulfate and iron reducing bacteria

Demethylation

- Conversion of MeHg to Hg2+
- Favorable under high (> 200 mV) or low redox (< -200 mV)
- Aerobic and methanogenic bacteria

San Francisco

MercurySilver

Los Angeles

Mercury Contamination in CA

California and Mercury have a history together...

 This led to the conception of the Statewide Mercury Control Program for Reservoirs

Goal = reduce MeHg in fish tissue

Reservoir managers: How do we do this??

An Extreme Example: Guadalupe Reservoir

- Located in the San Francisco Bay
- 39 million kg of Hg extracted from cinnabar
 - Largest Hg mine in North America
- Sediment THg = 2.8 to 6.3 mg/kg
- Water MeHg = up to 57 ng/L
- Fish tissue = typically 5mg/kg in adults, up to 16.5 mg/kg (EPA limit = 0.3 mg/kg)

Can Oxygen Help?

Chamber Study: Does DO reduce flux of MeHg?

Findings:

- Anaerobic MeHg flux = 22.3 ng/m2 per day
- Aerobic MeHg flux = 5.5 ng/m2 per day

Impact:

Implemented oxygen line diffuser to reduce summer anoxia

Oxygenation Results

Pre-Oxygenation

Bottom Water MeHg Avg = 17 ng/L

Post-Oxygenation

- Bottom Water MeHg Avg < 1 ng/L
- Slow decline in fish tissue MeHg

What's the Catch?

- \$600,000 construction cost
- \$25,000/year in electricity
- Fish tissue will still be elevated decades from now at current rate

Why?

- Total mass of MeHg in water column < than 10 mg
- < MeHg in 10 lbs of Large Mouth Bass

Recycling!?

Hodges Reservoir

- Backup water supply
- 37 million m³ volume
- 25 m maximum depth
- 64,000 hectare watershed
- Urban and agriculture
- Degraded water quality
- Recreational Fishing: Trophic Level 4
- 303(d) listed for mercury in fish tissue

Hodges 2017

Dissolved Oxygen

Redox Potential

Speece Cone Oxygenation

- On-shore Liquid Oxygen storage
- Submerged cone at Site A
- 8 tons of oxygen per day
- \$4 million construction cost

The Oxygen Barrier

Stratified Reservoir

Oxygenated Reservoir

Bioaccumulation

- MeHg peak production/release = May to August
- Algae = "hot" fish food in May to July
- Zooplankton MeHg increases during stratification
- Little fish = no significant change
- Big fish = dramatically increasing Hg content

Surface Algae: MeHg to Chlorophyll A Ratio

2018 Water Quality Monitoring

- 1. Standard profile
- 2. Aqueous nutrients and metals
- 3. Carbon quality
- 4. Sediment ORP and pH
- 5. Sediment sulfur and iron speciation

2018 Mercury Analysis

1. Water Column:

 Total and Dissolved MeHg/THg

2. Hg Bioavailability

- Sediment Sequential Extraction
- Sediment Tin-reducible Hg
- Porewater Thiol Extractable Hg

3. Trophic Transfer

- Seston MeHg/THg and Stable Isotopes
- Zooplankton identification and MeHg/THg
- Fish Tissue THg

4. Genetic Analysis (16-S RNA)

- HgcA methylation gene
- MerB demethylation gene
- Bacteria genes: dsrA, cymA, mcrA

Incubation Experiment Response Rates

Is MeHg production linked to Oxygen??

No known aerobic methylators -> can't blame it on the bacteria!

However

- Iron reduction requires oxidized iron
- Sulfate reduction requires oxidized sulfur compounds

Short answer – it depends!

Takeaways

Mercury Levels in Fish

- Reducing Bioaccumulation is tough
 - Food webs are complex!
- 200 mV to -200 mV Redox = MeHg production
- Iron and sulfur cycling heavily involved
- Oxygen can serve as redox barrier
- However, Oxygen can also replenish oxidized sulfur/iron compounds

HIGH	MODERATE		LOW	
Bluefish	Bass (Striped,	Perch	 Anchovies 	Perch (Ocean)
• Grouper	Black)	(Freshwater)	 Butterfish 	 Plaice
Mackerel (King,	• Carp	 Sablefish 	 Catfish 	Pollock
Spanish, Gulf)	Cod (Alaskan)	 Skate 	• Clam	•Salmon*
• Marlin	Croaker	 Snapper 	Crab (Domestic)	(Canned, Fresh)
 Orange Roughy 	(White Pacific)	• Tuna	Crawfish/Crayfish	 Sardine
• Sea Bass	 Halibut (Atlantic, Pacific) 	(Canned Chunk Light, Skipjack)	Croaker (Atlantic)	 Scallop
(Chilean)	Jacksmelt	Weakfish	• Flounder	·Shad (American)
Shark	(Silverside)	(Sea Trout)		• Shrimp
 Swordfish 	Lobster Mahi Mahi Monkfish		Haddock (Atlantic)	• Sole (Pacific)
 Tilefish 			• Hake	• Squid (Calamari)
•Tuna (Bigeye, Ahi, Canned Albacore, Yellowfin)			• Herring	Tilapia
	*Farmed salmon may contain PCBs & chemicals that have serious long-term health effects.		 Mackerel (Chub, N. Atlantic) 	• Trout (Freshwater)
Tollowini)			Annual Comment	ATRIMONAL POR CONTRACTOR
www.nrdc.org			• Mullet	Whitefish
			Oyster	Whiting